Scaling limit of the homogenization commutator for Gaussian coefficient fields

نویسندگان

چکیده

Consider a linear elliptic partial differential equation in divergence form with random coefficient field. The solution-operator displays fluctuations around its expectation. recently-developed pathwise theory of stochastic homogenization reduces the characterization these to those so-called standard commutator. In this contribution, we investigate scaling limit key quantity: starting from Gaussian-like field possibly strong correlations, establish convergence rescaled commutator fractional Gaussian field, depending on decay correlations and (non)degeneracy limit. This extends general dimension d≥1 previous results so far limited d=1, continuum setting recent discrete i.i.d. case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Limit of Fluctuations in Stochastic Homogenization

We investigate the global fluctuations of solutions to elliptic equations with random coefficients in the discrete setting. In dimension d ⩾ 3 and for i.i.d. coefficients, we show that after a suitable scaling, these fluctuations converge to a Gaussian field that locally resembles a (generalized) Gaussian free field. The paper begins with a heuristic derivation of the result, which can be read ...

متن کامل

Gaussian Limit for Determinantal Random Point Fields

We prove that, under fairly general conditions, properly rescaled determinantal random point field converges to a generalized Gaussian random process.

متن کامل

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

Central Limit Theorems for Non-Linear Functionals of Gaussian Fields

In the present paper it is shown that the central limit theorem holds for some non-linear functionals of stationary Gaussian fields if the correlation function of the underlying field tends fast enough to zero. The results are formulated in terms of the Hermite rank of the functional and of the rate of the correlation function. Then we show an example when the limit field is self-similar and Ga...

متن کامل

Gaussian fields satisfying simultaneous operator scaling relations

Random fields are a useful tool for modelling spatial phenomenon like environmental fields, including for example, hydrology, geology, oceanography and medical images. Many times the chosen model has to include some statistical dependence structure that might be present across the scales. Thus, an usual assumption is self-similarity (see [Lamp62]), defined for a random field {X(x)}x∈Rd on R by

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Applied Probability

سال: 2022

ISSN: ['1050-5164', '2168-8737']

DOI: https://doi.org/10.1214/21-aap1705